Plackett-Burman Design and Response Surface Optimization of Medium Trace Nutrients for Glycolipopeptide Biosurfactant Production
نویسندگان
چکیده
Background A glycolipopeptide biosurfactant produced by Pseudomonas aeruginosa strain IKW1 reduced the surface tension of fermentation broth from 71.31 to 24.62 dynes/cm at a critical micelle concentration of 20.80 mg/L. The compound proved suitable for applications in emulsion stabilization in food, as well as in cosmetic and pharmaceutical formulations. Method In the present study, Plackett-Burman design (PBD) and response surface method (RSM) were employed to screen and optimize concentrations of trace nutrients in the fermentation medium, to increase surfactant yield. Results The PBD selected 5 out of the 12 screened significant trace nutrients. The RSM, on the other hand, resulted in the production of 84.44 g glycolipopeptide/L in the optimized medium containing 1.25 mg/L nickel, 0.125 mg/L zinc, 0.075 mg/L iron, 0.0104 mg/L boron, and 0.025 mg/L copper. Conclusion Significant second-order quadratic models for biomass (P<0.05; adjusted R2=94.29%) and biosurfactant (R2=99.44%) responses suggest excellent goodness-of-fit of the models. However, their respective non-significant lack-of-fit (Biomass: F=1.28; P=0.418; Biosurfactant: F=1.20; P=0.446) test results indicate their adequacy to explain data variations in the experimental region. The glycolipopeptide is recommended for the formulation of inexpensive pharmaceutical products that require surface-active compounds.
منابع مشابه
Plackett-Burman Design and Response Surface Optimization of Medium Trace Nutrients for Glycolipopeptide Biosurfactant Production
Background: A glycolipopeptide biosurfactant produced by Pseudomonas aeruginosa strain IKW1 reduced the surface tension of fermentation broth from 71.31 to 24.62 dynes/cm at a critical micelle concentration of 20.80 mg/L. The compound proved suitable for applications in emulsion stabilization in food, as well as in cosmetic and pharmaceutical formulations. Methods: In the present study, Placket...
متن کاملSimultaneous Optimization of the Production of Organic Selenium and Cell Biomass in Saccharomyces Cerevisiae by Plackett-Burman and Box-Behnken Design
Selenium (Se) as a vital trace element has many biological activities such as anti-inflammation and anti-oxidation. Selenomethionine as an organic selenium plays a vital role in the response to oxidative stress. At present, Saccharomyces cerevisiae is one of the best microorganisms that has the ability to accumulate selenium. Production of Seleno-yeast was done by growing Saccharomyces cerevisi...
متن کاملBiosurfactant production by a newly isolated soft coral-associated marine Bacillus sp.E34: Statistical optimization and characterization
Marine biosurfactant-producing bacteria were isolated from the soft coral Sarchophyton glaucum collected from Red sea. The main criteria used for screening of biosurfactant producers were haemolytic activity, dropcollapse, oil displacement and emulsification index. Based on phenotypic characterization and analysis of 16S rDNA sequencing the most potent isolate was identified as Bacillus sp.E34....
متن کاملProduction of L-Asparaginase by Serratia marcescens SB08: Optimization by Response Surface Methodology
This paper describes optimization method that combines the Plackett-Burman design, a factorial design and the response surface method, which were used to optimize the medium for the production of L-asparaginase by Serratia marcescens SB08. Four medium factors, from out of 11 medium factors, were screened by Plackett-Burman design experiments and subsequent optimization process to find out the o...
متن کاملSimultaneous Optimization of the Production of Organic Selenium and Cell Biomass in Saccharomyces Cerevisiae by Plackett-Burman and Box-Behnken Design
Selenium (Se) as a vital trace element has many biological activities such as anti-inflammation and anti-oxidation. Selenomethionine as an organic selenium plays a vital role in the response to oxidative stress. At present, Saccharomyces cerevisiae is one of the best microorganisms that has the ability to accumulate selenium. Production of Seleno-yeast was done by growing Saccharomyces cerevisi...
متن کامل